skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Fengbin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 18, 2026
  2. Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5′-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes. FtsH nanotubes require constant energy input to maintain their integrity and degrade over time with the concomitant hydrolysis of ATP, analogous to natural NTP-dependent cytoskeletal assemblies. Yet, in contrast to natural dissipative systems, ATP hydrolysis is catalyzed by free FtsH protomers and FtsH nanotubes serve to conserve ATP, leading to transient assemblies whose lifetimes can be tuned from days to minutes through the inclusion of external ATPases in solution. 
    more » « less
    Free, publicly-accessible full text available January 13, 2026
  3. Abstract A contractile sheath and rigid tube assembly is a widespread apparatus used by bacteriophages, tailocins, and the bacterial type VI secretion system to penetrate cell membranes. In this mechanism, contraction of an external sheath powers the motion of an inner tube through the membrane. The structure, energetics, and mechanism of the machinery imply rigidity and straightness. The contractile tail ofAgrobacterium tumefaciensbacteriophage Milano is flexible and bent to varying degrees, which sets it apart from other contractile tail-like systems. Here, we report structures of the Milano tail including the sheath-tube complex, baseplate, and putative receptor-binding proteins. The flexible-to-rigid transformation of the Milano tail upon contraction can be explained by unique electrostatic properties of the tail tube and sheath. All components of the Milano tail, including sheath subunits, are crosslinked by disulfides, some of which must be reduced for contraction to occur. The putative receptor-binding complex of Milano contains a tailspike, a tail fiber, and at least two small proteins that form a garland around the distal ends of the tailspikes and tail fibers. Despite being flagellotropic, Milano lacks thread-like tail filaments that can wrap around the flagellum, and is thus likely to employ a different binding mechanism. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract A fragment‐based approach has proven successful in drug design and protein assemblies, yet its potential for constructing biomaterials from simple organic building blocks remains underexplored, particularly for self‐assembly in aqueous phases, where water disrupts intermolecular hydrogen bonding. To the best of our knowledge, this study introduces the first case of integrating fragments from self‐assembling molecules to design a small organic molecule that forms novel hierarchical nanotubes with polymorphism. The molecule's compact design incorporates three structural motifs derived from known nanotube assemblies, enabling a hierarchical assembly process: individual molecules with two conformations form dimers, which organize into hexameric units. These hexamers further assemble into nanotubes comprising 2‐, 5‐, and 6‐protofilament fibers. The nanofibers share a nearly identical asymmetric unit – a hexameric triangular plate – with similar axial and lateral interfaces. The lateral interface, involving interactions between phosphate groups and aromatic rings, exhibits plasticity, allowing slight rotational variations between adjacent units. This adaptability facilitates the formation of diverse nanofiber architectures, showcasing the flexibility of these systems in aqueous environments. By leveraging fragments of self‐assembling molecules, this work demonstrates a straightforward strategy that combines conformational flexibility and self‐assembling fragments to construct advanced supramolecular biomaterials from small organic building blocks in aqueous settings. 
    more » « less
  5. Abstract Large gaps exist in our understanding of how bacteriophages, the most abundant biological entities on Earth, assemble and function. The structure of the “neck” region, where the DNA-filled capsid is connected to the host-recognizing tail remains poorly understood. We describe cryo-EM structures of the neck, the neck-capsid and neck-tail junctions, and capsid of theAgrobacteriumphage Milano. The Milano neck 1 protein connects the 12-fold symmetrical neck to a 5-fold vertex of the icosahedral capsid. Comparison of Milano neck 1 homologs leads to four proposed classes, likely evolved from the simplest one in siphophages to more complex ones in myo- and podophages. Milano neck is surrounded by the atypical collar, which covalently crosslinks the tail sheath to neck 1. The Milano capsid is decorated with three types of proteins, a minor capsid protein (mCP) and two linking proteins crosslinking the mCP to the major capsid protein. The extensive network of disulfide bonds within and between neck, collar, capsid and tail provides an exceptional structural stability to Milano. 
    more » « less
  6. Abstract Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction betweenAcinetobacterphage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the nativeAcinetobactertype IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics. 
    more » « less